322 lines
10 KiB
C++
322 lines
10 KiB
C++
//
|
|
// Created by Иван Ильин on 05.02.2021.
|
|
//
|
|
|
|
#include "RigidBody.h"
|
|
#include "../Plane.h"
|
|
#include "../utils/Log.h"
|
|
#include "../utils/Time.h"
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
|
|
Vec3D RigidBody::_findFurthestPoint(const Vec3D& direction) {
|
|
std::shared_ptr<Vec3D> maxPoint = std::make_shared<Vec3D>(Vec3D{0, 0, 0});
|
|
double maxDistance = -std::numeric_limits<double>::max();
|
|
|
|
for(auto& tri : triangles()){
|
|
for(int i = 0; i < 3; i++){
|
|
Vec3D point = Vec3D(tri[i]) + position();
|
|
|
|
double distance = point.dot(direction.normalized());
|
|
if(distance > maxDistance) {
|
|
maxDistance = distance;
|
|
maxPoint = std::make_shared<Vec3D>(point);
|
|
}
|
|
}
|
|
}
|
|
|
|
return *maxPoint;
|
|
}
|
|
|
|
Vec3D RigidBody::_support(std::shared_ptr<RigidBody> obj, const Vec3D& direction) {
|
|
Vec3D p1 = _findFurthestPoint(direction);
|
|
Vec3D p2 = obj->_findFurthestPoint(-direction);
|
|
Vec3D res = p1 - p2;
|
|
|
|
return p1 - p2;
|
|
}
|
|
|
|
NextSimplex RigidBody::_nextSimplex(const Simplex &points) {
|
|
switch (points.type()) {
|
|
case SimplexType::Line: return _lineCase(points);
|
|
case SimplexType::Triangle: return _triangleCase(points);
|
|
case SimplexType::Tetrahedron: return _tetrahedronCase(points);
|
|
|
|
default: throw std::logic_error{"RigidBody::_nextSimplex: simplex is not Line, Triangle or Tetrahedron"};
|
|
}
|
|
}
|
|
|
|
NextSimplex RigidBody::_lineCase(const Simplex& points) {
|
|
std::shared_ptr<Simplex> newPoints = std::make_shared<Simplex>(points);
|
|
std::shared_ptr<Vec3D> newDirection;
|
|
|
|
Vec3D a = points[0];
|
|
Vec3D b = points[1];
|
|
|
|
Vec3D ab = b - a;
|
|
Vec3D ao = - a;
|
|
|
|
if (ab.dot(ao) > 0) {
|
|
newDirection = std::make_shared<Vec3D>(ab.cross(ao).cross(ab));
|
|
} else {
|
|
newPoints = std::make_shared<Simplex>(Simplex{a});
|
|
newDirection = std::make_shared<Vec3D>(ao);
|
|
}
|
|
|
|
return NextSimplex{*newPoints, *newDirection, false};
|
|
}
|
|
|
|
NextSimplex RigidBody::_triangleCase(const Simplex &points) {
|
|
std::shared_ptr<Simplex> newPoints = std::make_shared<Simplex>(points);
|
|
std::shared_ptr<Vec3D> newDirection;
|
|
|
|
Vec3D a = points[0];
|
|
Vec3D b = points[1];
|
|
Vec3D c = points[2];
|
|
|
|
Vec3D ab = b - a;
|
|
Vec3D ac = c - a;
|
|
Vec3D ao = - a;
|
|
|
|
Vec3D abc = ab.cross(ac);
|
|
|
|
if (abc.cross(ac).dot(ao) > 0) {
|
|
if (ac.dot(ao) > 0) {
|
|
newPoints = std::make_shared<Simplex>(Simplex{ a, c });
|
|
newDirection = std::make_shared<Vec3D>(ac.cross(ao).cross(ac));
|
|
}
|
|
else {
|
|
return _lineCase(Simplex { a, b });
|
|
}
|
|
} else {
|
|
if (ab.cross(abc).dot(ao) > 0) {
|
|
return _lineCase(Simplex { a, b });
|
|
}
|
|
else {
|
|
if (abc.dot(ao) > 0) {
|
|
newDirection = std::make_shared<Vec3D>(abc);
|
|
} else {
|
|
newPoints = std::make_shared<Simplex>(Simplex{ a, c, b });
|
|
newDirection = std::make_shared<Vec3D>(-abc);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NextSimplex{*newPoints, *newDirection, false};
|
|
}
|
|
|
|
NextSimplex RigidBody::_tetrahedronCase(const Simplex &points) {
|
|
Vec3D a = points[0];
|
|
Vec3D b = points[1];
|
|
Vec3D c = points[2];
|
|
Vec3D d = points[3];
|
|
|
|
Vec3D ab = b - a;
|
|
Vec3D ac = c - a;
|
|
Vec3D ad = d - a;
|
|
Vec3D ao = - a;
|
|
|
|
Vec3D abc = ab.cross(ac);
|
|
Vec3D acd = ac.cross(ad);
|
|
Vec3D adb = ad.cross(ab);
|
|
|
|
if (abc.dot(ao) > 0) {
|
|
return _triangleCase(Simplex{ a, b, c });
|
|
}
|
|
|
|
if (acd.dot(ao) > 0) {
|
|
return _triangleCase(Simplex{ a, c, d });
|
|
}
|
|
|
|
if (adb.dot(ao) > 0) {
|
|
return _triangleCase(Simplex{ a, d, b });
|
|
}
|
|
|
|
return NextSimplex{points, Vec3D(), true};
|
|
}
|
|
|
|
std::pair<bool, Simplex> RigidBody::checkGJKCollision(std::shared_ptr<RigidBody> obj) {
|
|
|
|
// Get initial support point in any direction
|
|
std::shared_ptr<Vec3D> support = std::make_shared<Vec3D>(_support(obj, Vec3D{1, 0, 0}));
|
|
|
|
// Simplex is an array of points, max count is 4
|
|
std::shared_ptr<Simplex> points = std::make_shared<Simplex>();
|
|
points->push_front(*support);
|
|
|
|
// New direction is towards the origin
|
|
std::shared_ptr<Vec3D> direction = std::make_shared<Vec3D>(-*support);
|
|
|
|
while (true) {
|
|
support = std::make_shared<Vec3D>(_support(obj, *direction));
|
|
|
|
if (support->dot(*direction) <= 0)
|
|
return std::make_pair(false, *points); // no collision
|
|
|
|
points->push_front(*support);
|
|
|
|
NextSimplex nextSimplex = _nextSimplex(*points);
|
|
|
|
direction = std::make_shared<Vec3D>(nextSimplex.newDirection);
|
|
points = std::make_shared<Simplex>(nextSimplex.newSimplex);
|
|
|
|
if (nextSimplex.finishSearching) {
|
|
if(obj->isCollider())
|
|
_inCollision = true;
|
|
return std::make_pair(true, *points);
|
|
}
|
|
}
|
|
}
|
|
|
|
CollisionPoint RigidBody::EPA(const Simplex& simplex, std::shared_ptr<RigidBody> obj) {
|
|
|
|
std::vector<Vec3D> polytope(simplex.begin(), simplex.end());
|
|
std::vector<size_t> faces = {
|
|
0, 1, 2,
|
|
0, 3, 1,
|
|
0, 2, 3,
|
|
1, 3, 2
|
|
};
|
|
|
|
auto faceNormals = _getFaceNormals(polytope, faces);
|
|
std::vector<std::shared_ptr<FaceNormal>> normals = faceNormals.first;
|
|
size_t minFace = faceNormals.second;
|
|
|
|
std::shared_ptr<Vec3D> minNormal = std::make_shared<Vec3D>(normals[minFace]->normal);
|
|
double minDistance = std::numeric_limits<double>::max();
|
|
|
|
int iters = 0;
|
|
while (minDistance == std::numeric_limits<double>::max() && iters++ < size() + obj->size()) {
|
|
minNormal = std::make_shared<Vec3D>(normals[minFace]->normal);
|
|
minDistance = normals[minFace]->distance;
|
|
|
|
Vec3D support = _support(obj, *minNormal);
|
|
double sDistance = minNormal->dot(support);
|
|
|
|
if (std::abs(sDistance - minDistance) > Consts::EPA_EPS) {
|
|
minDistance = std::numeric_limits<double>::max();
|
|
std::vector<std::pair<size_t, size_t>> uniqueEdges;
|
|
|
|
for (size_t i = 0; i < normals.size(); i++) {
|
|
if (normals[i]->normal.dot(support) > 0) {
|
|
size_t f = i * 3;
|
|
|
|
uniqueEdges = _addIfUniqueEdge(uniqueEdges, faces, f + 0, f + 1);
|
|
uniqueEdges = _addIfUniqueEdge(uniqueEdges, faces, f + 1, f + 2);
|
|
uniqueEdges = _addIfUniqueEdge(uniqueEdges, faces, f + 2, f + 0);
|
|
|
|
faces.erase(faces.begin() + f);
|
|
faces.erase(faces.begin() + f);
|
|
faces.erase(faces.begin() + f);
|
|
normals.erase(normals.begin() + i--);
|
|
}
|
|
}
|
|
|
|
std::vector<size_t> newFaces;
|
|
for (auto [edgeIndex1, edgeIndex2] : uniqueEdges) {
|
|
newFaces.push_back(edgeIndex1);
|
|
newFaces.push_back(edgeIndex2);
|
|
newFaces.push_back(polytope.size());
|
|
}
|
|
polytope.push_back(support);
|
|
|
|
faces.insert(faces.end(), newFaces.begin(), newFaces.end());
|
|
|
|
auto newFaceNormals = _getFaceNormals(polytope, faces);
|
|
|
|
normals = newFaceNormals.first;
|
|
minFace = newFaceNormals.second;
|
|
}
|
|
}
|
|
|
|
_collisionNormal = minNormal;
|
|
if(std::abs(minDistance - std::numeric_limits<double>::max()) < Consts::EPS)
|
|
return CollisionPoint{*minNormal, 0};
|
|
|
|
return CollisionPoint{*minNormal, minDistance + Consts::EPA_EPS};
|
|
}
|
|
|
|
std::pair<std::vector<std::shared_ptr<FaceNormal>>, size_t> RigidBody::_getFaceNormals(const std::vector<Vec3D>& polytope, const std::vector<size_t>& faces) {
|
|
std::vector<std::shared_ptr<FaceNormal>> normals;
|
|
size_t nearestFaceIndex = 0;
|
|
double minDistance = std::numeric_limits<double>::max();
|
|
|
|
for (size_t i = 0; i < faces.size(); i += 3) {
|
|
Vec3D a = polytope[faces[i + 0]];
|
|
Vec3D b = polytope[faces[i + 1]];
|
|
Vec3D c = polytope[faces[i + 2]];
|
|
|
|
std::shared_ptr<Vec3D> normal = std::make_shared<Vec3D>((b - a).cross(c - a).normalized());
|
|
|
|
double distance = normal->dot(a);
|
|
|
|
if (distance < -Consts::EPS) {
|
|
normal = std::make_unique<Vec3D>(-*normal);
|
|
distance *= -1;
|
|
}
|
|
|
|
normals.emplace_back(std::make_shared<FaceNormal>(FaceNormal{*normal, distance}));
|
|
|
|
if (distance < minDistance) {
|
|
nearestFaceIndex = i / 3;
|
|
minDistance = distance;
|
|
}
|
|
}
|
|
|
|
return {normals, nearestFaceIndex};
|
|
}
|
|
|
|
std::vector<std::pair<size_t, size_t>> RigidBody::_addIfUniqueEdge(const std::vector<std::pair<size_t, size_t>>& edges, const std::vector<size_t>& faces, size_t a, size_t b) {
|
|
|
|
std::vector<std::pair<size_t, size_t>> newEdges = edges;
|
|
|
|
// We are interested in reversed edge
|
|
// 0--<--3
|
|
// / \ B / A: 2-0
|
|
// / A \ / B: 0-2
|
|
// 1-->--2
|
|
auto reverse = std::find(newEdges.begin(), newEdges.end(), std::make_pair(faces[b], faces[a]));
|
|
|
|
if (reverse != newEdges.end()) {
|
|
newEdges.erase(reverse);
|
|
} else {
|
|
newEdges.emplace_back(faces[a], faces[b]);
|
|
}
|
|
|
|
return newEdges;
|
|
}
|
|
|
|
void RigidBody::updatePhysicsState() {
|
|
translate(*_velocity * Time::deltaTime());
|
|
_velocity = std::make_unique<Vec3D>(*_velocity + *_acceleration * Time::deltaTime());
|
|
}
|
|
|
|
void RigidBody::setVelocity(const Vec3D& velocity) {
|
|
_velocity = std::make_unique<Vec3D>(velocity);
|
|
}
|
|
|
|
void RigidBody::addVelocity(const Vec3D &velocity) {
|
|
_velocity = std::make_unique<Vec3D>(*_velocity + velocity);
|
|
}
|
|
|
|
void RigidBody::setAcceleration(const Vec3D& acceleration) {
|
|
_acceleration = std::make_unique<Vec3D>(acceleration);
|
|
}
|
|
|
|
RigidBody::RigidBody(const Mesh &mesh) : Mesh(mesh) {
|
|
|
|
}
|
|
|
|
void RigidBody::makeLogObjPolytope(const std::vector<Vec3D> &polytope, const std::vector<size_t> &faces) {
|
|
std::fstream file("polytope_log.obj", std::ios::out);
|
|
|
|
for(auto &p : polytope)
|
|
file << "v " << p.x() << " " << p.y() << " " << p.z() << std::endl;
|
|
|
|
for(int i = 0; i < faces.size(); i += 3)
|
|
file << "f " << faces[i + 0]+1 << " " << faces[i + 1]+1 << " " << faces[i + 2]+1 << std::endl;
|
|
|
|
file.close();
|
|
}
|