// // Created by Иван Ильин on 26.01.2021. // #ifndef ENGINE_INTERPOLATION_H #define ENGINE_INTERPOLATION_H #include #include "../Vec2D.h" #include "../Consts.h" namespace Interpolation { static double Linear(double t); static double Cos(double t); static double Bezier(const Vec2D &p1, const Vec2D &p2, double t); static double Bouncing(double t); static double dLinear(double t, double dt); static double dCos(double t, double dt); static double dBezier(const Vec2D &p1, const Vec2D &p2, double t, double dt); static double dBouncing(double t, double dt); }; double Interpolation::Linear(double t) { if (t < 0) t = -t; return ((int) trunc(t) % 2) ? 1.0 - (t - trunc(t)) : (t - trunc(t)); } double Interpolation::Cos(double t) { return 0.5 * (1 - cos(Consts::PI * Interpolation::Linear(t))); } double Interpolation::Bezier(const Vec2D &p1, const Vec2D &p2, double t) { // TODO: implement bezier curve without finding the root of equation t = Interpolation::Linear(t); double h = Consts::EPS; double eps = Consts::EPS; // We are trying to find 's' when px = t auto f = [=](double s) { return 3.0 * (1.0 - s) * (1.0 - s) * s * p1.x() + 3.0 * (1.0 - s) * s * s * p2.x() + s * s * s - t; }; // Using found 's' we will calculate resulting py auto py = [=](double s) { return 3.0 * (1.0 - s) * (1.0 - s) * s * p1.y() + 3.0 * (1.0 - s) * s * s * p2.y() + s * s * s; }; auto df = [=](double s) { return (f(s + h) - f(s - h)) / (2.0 * h); }; // Newton method double s1 = 0.0, s2 = 0.5; int i = 0; while (std::abs(s1 - s2) > eps) { s1 = s2; s2 = s1 - f(s1) / df(s1); i++; } return py(s1); } double Interpolation::Bouncing(double t) { t = Interpolation::Linear(t); return 0.5 * (1.0 / (1.0 + exp(10.0 * (-4.0 * t + 0.8))) + (1.0 + 2.5 * sin(50.0 * (t - 1.0 / 3.0)) * exp(-7.0 * t)) / (1.0 + exp(10.0 * (-15.0 * t + 3.1)))); } double Interpolation::dLinear(double t, double dt) { return ((int) trunc(t) % 2) ? -dt : dt; } double Interpolation::dCos(double t, double dt) { return 0.5 * Consts::PI * sin(Consts::PI * t) * dt; } double Interpolation::dBezier(const Vec2D &p1, const Vec2D &p2, double t, double dt) { return Interpolation::Bezier(p1, p2, t + dt) - Interpolation::Bezier(p1, p2, t); } double Interpolation::dBouncing(double t, double dt) { return Bouncing(t + dt) - Bouncing(t); } #endif //INC_3DZAVR_INTERPOLATION_H