// // Created by Иван Ильин on 13.01.2021. // #include #include #include #include #include "Mesh.h" #include "utils/Log.h" using namespace std; Mesh &Mesh::operator*=(const Matrix4x4 &matrix4X4) { for (auto& t : _tris) t = t * matrix4X4; return *this; } Mesh &Mesh::loadObj(const std::string& filename, const std::string &materials, const Point4D& scale) { auto objects = Mesh::LoadObjects(filename, materials, scale); for(auto& obj : objects) { for (auto &tri : obj->triangles()) { _tris.push_back(tri); } } return *this; } Mesh::Mesh(const std::string& filename, const std::string &materials, const Point4D& scale){ loadObj(filename, materials, scale); } Mesh::Mesh(const vector &tries){ _tris = tries; } Mesh::Mesh(const Mesh& mesh) { *this = mesh; } Mesh Mesh::Obj(const std::string& filename) { return Mesh(filename); } void Mesh::rotate(const Point4D &r) { _angle = _angle + r; *this *= Matrix4x4::Rotation(r); for(auto attached : _attachedObjects) attached->rotateRelativePoint(position(), r); } void Mesh::rotate(const Point4D &v, double r) { *this *= Matrix4x4::Rotation(v, r); for(auto attached : _attachedObjects) attached->rotateRelativePoint(position(), v, r); } void Mesh::scale(const Point4D &s) { *this *= Matrix4x4::Scale(s); // TODO: scale attached objects } void Mesh::translate(const Point4D &t) { _position = _position + t; for(auto attached : _attachedObjects) attached->translate(t); } Mesh &Mesh::operator=(const Mesh &mesh) { _tris = mesh._tris; _position = mesh._position; _color = mesh._color; return *this; } void Mesh::rotateRelativePoint(const Point4D &s, const Point4D &r) { _angle = _angle + r; // Translate XYZ by vector r1 Point4D r1 = _position - s; *this *= Matrix4x4::Translation(r1); // In translated coordinate system we rotate body and position Matrix4x4 rotationMatrix = Matrix4x4::Rotation(r); Point4D r2 = rotationMatrix*r1; *this *= rotationMatrix; // After rotation we translate XYZ by vector -r2 and recalculate position *this *= Matrix4x4::Translation(-r2); _position = s + r2; if(_attachedObjects.empty()) return; for(auto attached : _attachedObjects) attached->rotateRelativePoint(s, r); } void Mesh::rotateRelativePoint(const Point4D &s, const Point4D &v, double r) { // Translate XYZ by vector r1 Point4D r1 = _position - s; *this *= Matrix4x4::Translation(r1); // In translated coordinate system we rotate body and position Matrix4x4 rotationMatrix = Matrix4x4::Rotation(v, r); Point4D r2 = rotationMatrix*r1; *this *= rotationMatrix; // After rotation we translate XYZ by vector -r2 and recalculate position *this *= Matrix4x4::Translation(-r2); _position = s + r2; for(auto attached : _attachedObjects) attached->rotateRelativePoint(s, v, r); } void Mesh::translateToPoint(const Point4D &point) { translate(point - _position); } void Mesh::setColor(sf::Color c) { _color = c; for (auto& t : _tris) t = Triangle(t[0], t[1], t[2], _color); } std::vector> Mesh::LoadObjects(const string &filename, const string &materials, const Point4D &scale) { std::vector> objects; map maters; ifstream file(filename); if (!file.is_open()) { Log::log("Mesh::LoadObjects(): cannot load file from " + filename); return objects; } if(!materials.empty()) { ifstream mat(materials); if (!mat.is_open()) { Log::log("Mesh::LoadObjects(): cannot load mat from " + materials); return objects; } else { while (!mat.eof()) { char line[128]; mat.getline(line, 128); stringstream s; s << line; int color[4]; string matName; s >> matName >> color[0] >> color[1] >> color[2] >> color[3]; maters.insert({matName, sf::Color(color[0],color[1],color[2], color[3])}); } mat.close(); } } vector verts; std::vector tris; sf::Color currentColor = sf::Color(255, 245, 194, 255); while (!file.eof()) { char line[128]; file.getline(line, 128); stringstream s; s << line; char junk; if(line[0] == 'o') { if(!tris.empty()) { objects.push_back(make_shared(tris)); objects.back()->scale(scale); } tris.clear(); } if (line[0] == 'v') { double x, y, z; s >> junk >> x >> y >> z; verts.emplace_back(x, y, z, 1); } if(line[0] == 'g') { string matInfo; s >> junk >> matInfo; string colorName = matInfo.substr(matInfo.size()-3, 3); currentColor = maters[matInfo.substr(matInfo.size()-3, 3)]; } if (line[0] == 'f') { int f[3]; s >> junk >> f[0] >> f[1] >> f[2]; tris.emplace_back(verts[f[0] - 1], verts[f[1] - 1], verts[f[2] - 1], currentColor); } } if(!tris.empty()) { objects.push_back(make_shared(tris)); objects.back()->scale(scale); } file.close(); return objects; } Mesh Mesh::LineTo(const Point4D& from, const Point4D& to, double line_width, sf::Color color) { Mesh line; Point4D v1 = (to - from).normalized(); Point4D v2 = from.cross3D(from + Point4D{1, 0, 0}).normalized(); Point4D v3 = v1.cross3D(v2).normalized(); // from plane Point4D p1 = from - v2 * line_width/2.0 - v3 * line_width/2.0; Point4D p2 = from - v2 * line_width/2.0 + v3 * line_width/2.0; Point4D p3 = from + v2 * line_width/2.0 + v3 * line_width/2.0; Point4D p4 = from + v2 * line_width/2.0 - v3 * line_width/2.0; // to plane Point4D p5 = to - v2 * line_width/2.0 - v3 * line_width/2.0; Point4D p6 = to - v2 * line_width/2.0 + v3 * line_width/2.0; Point4D p7 = to + v2 * line_width/2.0 + v3 * line_width/2.0; Point4D p8 = to + v2 * line_width/2.0 - v3 * line_width/2.0; line._tris = { { p2, p4, p1 }, { p2, p3, p4 }, { p1, p6, p2 }, { p1, p5, p6 }, { p2, p6, p7 }, { p2, p7, p3 }, { p6, p5, p8 }, { p6, p8, p7 }, { p4, p3, p7 }, { p4, p7, p8 }, { p1, p8, p5 }, { p1, p4, p8 } }; line.setColor(color); for(auto& triangle : line._tris) triangle = Triangle(Point4D{triangle[0].x(), triangle[0].y(), triangle[0].z(), 1}, Point4D{triangle[1].x(), triangle[1].y(), triangle[1].z(), 1}, Point4D{triangle[2].x(), triangle[2].y(), triangle[2].z(), 1}, line.color()); return line; }